Lipschitz quotients from metric trees and from Banach spaces containing l1

نویسندگان

  • William B. Johnson
  • Joram Lindenstrauss
  • David Preiss
  • Gideon Schechtman
چکیده

A Lipschitz map f between the metric spaces X and Y is called a Lipschitz quotient map if there is a C > 0 (the smallest such C, the co-Lipschitz constant, is denoted coLip(f), while Lip(f) denotes the Lipschitz constant of f) so that for every x ∈ X and r > 0, fBX(x, r) ⊃ BY (f(x), r/C). Thus Lipschitz quotient maps are surjective maps which by definition have the property ensured by the open mapping theorem for surjective linear operators between Banach spaces. If there is a Lipschitz quotient mapping f from X onto Y with Lip(f) · coLip(f) ≤ C, we say that Y is a C-Lipschitz quotient of X. If Y is a C-Lipschitz quotient of X for some C, we say that Y is a Lipschitz quotient of X. Lipschitz quotient maps were introduced and studied in [4]. Among other results the following proposition was proved in [4] (see also [5], Theorem 11.18).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

On some open problems in cone metric space over Banach algebra

In this paper we prove an analogue of Banach and Kannan fixed point theorems by generalizing the Lipschitz constat $k$, in generalized Lipschitz mapping on cone metric space over Banach algebra, which are answers for the open problems proposed by Sastry et al, [K. P. R. Sastry, G. A. Naidu, T. Bakeshie, Fixed point theorems in cone metric spaces with Banach algebra cones, Int. J. of Math. Sci. ...

متن کامل

Embeddings of Proper Metric Spaces into Banach Spaces

We show that there exists a strong uniform embedding from any proper metric space into any Banach space without cotype. Then we prove a result concerning the Lipschitz embedding of locally finite subsets of Lp-spaces. We use this locally finite result to construct a coarse bi-Lipschitz embedding for proper subsets of any Lp-space into any Banach space X containing the l n p ’s. Finally using an...

متن کامل

Quotients of Banach Spaces and Surjectively Universal Spaces

We characterize those classes C of separable Banach spaces for which there exists a separable Banach space Y not containing l1 and such that every space in the class C is a quotient of Y .

متن کامل

Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces

A metric space X has Markov type 2, if for any reversible finite-state Markov chain {Zt} (with Z0 chosen according to the stationary distribution) and any map f from the state space to X, the distance Dt from f(Z0) to f(Zt) satisfies E(D t ) ≤ K tE(D 1) for some K = K(X) < ∞. This notion is due to K. Ball (1992), who showed its importance for the Lipschitz extension problem. However until now, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002